SSL With Oracle JDBC Thin Driver

An Oracle Technical White Paper
April 2010

Author: Jean de Lavarene

ORACLE

SSL With Oracle JDBC Thin Driver

INErOAUCHON. ...t 4
1. What SSL gIVES YOU....oiuiiiiiiiiiiiicic e 4
2. SSLL SEttNGS OVEIVIEW w..vviuiiviiiinireisicneseicscsete s ssssa e 5
2.1, On SEIVET ottt 5
2.2. 00 JDBC Thifl dIiVer .ccceceeiiieeieiriieieereeeieeseciesenseeeeseseeeeesenenseaeees 7
2.2.1. Which jars are required?........ccceveviererrnicreireniecreneeereeenens 7
2.2.2. How to activate SSLP.......cccocoviiiiiiiiniiiiccicccs 7
2.2.3. Which properties are involved?.......cooeeevnicernnieernnicerenenes 8
2.2.4. How can Oracle wallets be used in Javarccoceeeeevvrccrnnnenes 9
2.2.5. What cipher suites can be used? ... 10
Case #1: Use SSL for encryption 0Ny ...c.cccceueeicernnicernenieeenrieenenenes 11
Server coNfIgUIAtION.covviiiiiicccc e 11
JDBC Thin client configuration.........ccceeueirivininininnnininiiicceceeeenes 11
Case #2: Use SSL for encryption and Server Authentication................... 12
Server coNfIgUIAtION. ..o 12
JDBC Thin client configuration.........ccceeueivininininininnininiiicccccceeenes 12
If the truststore format type is JIKKS. ..o, 12

If the truststore is @ Walletcooviiiiiiiiniiiccc 12
Check the Server’s Distinguished Nameccccevvieeirnicenniccnnnes 13
Case #3: Use SSL for encryption and authentication of both tiers 13
Server coNfIgUIAtION. ..o 13
JDBC Thin client configuration........cccceeueirnniniiininininiiiiiccccceeenes 14
If the keystore format type 1s JIKKS......ocooviviiiiiiiiiie 14

If the keystore is @ Walletcccceueiiiiiiiininiiiiiiccccccccce, 14
Case #4: Use SSL as an authentication service in the Database 15
Server coNfIgUIAtION. ... 15
JDBC Thin client configuration........ccceeevvvninininininniniiiiccceceeenes 15
What's new in 11.1.0.72. oo 16
Meaningful error MESSAZES ... 16
Information about the cipher suite used........ccoovuiervnnicernieernnienen 16
Better handling of the PKCS12 provider for wallets........ccoocceuevreeuenee 16
Possibility to use the “oracle.net.wallet_location” property 16
CONCIUSION .. 17
Appendix A TroubleShOOtNZccuvviieieiiicereere e 17
Appendix B Creating truststores and KeyStoresooveericrerrenicnennn. 20
USING OFaAPKi e 20
Create a wallet for the test CA....ccoouiieiniiciiccceeceeaes 20
Create a wallet for the Oracle Server ..., 20

SSL With Oracle JDBC Thin Driver Page 2

For the client (proceed the same way as for the server)cccu..e. 22

To create a wallet that contains only the trusted certificate.............. 22
USING KEYLOOL.....cuiiiiiiiiiiccicc s 22
Create a JKS KeyStore. ... 22
Create a JKS trustStore. ..o 24

SSL With Oracle JDBC Thin Driver Page 3

Oracle Advanced Security (OAS) is an
Oracle Database Enterprise Edition Option.

Refer to the Java Secure Socket Extension
(JSSE) Reference Guide for details about
SSL and its support in Java.

SSL With Oracle JDBC Thin Driver

INTRODUCTION

Oracle Advanced Security (OAS) contains a comprehensive suite of security
features that protect enterprise networks and securely extend them to the Internet.
It provides a single source of integration with multiple network encryption, data
integrity and authentication solutions, single sign-on setrvices, and security

protocols.

Because Oracle databases contain sensitive information (employee and financial
records, customer orders, product information, etc.) and because of the security
threats (eavesdropping and data theft, data tampering, falsifying user identities)

security is a concern and OAS offers solutions to protect your database.

For data encryption and data integtity, you can configure either Oracle Net native
encryption (for example AES and SHA1 at the Oracle Net layer) or Secure Sockets
Layer (SSL). OAS also provides a choice of several strong authentication methods,
including Kerberos, Radius, and digital certificates.

This paper explains how to use SSL when the network client tier software is the
Oracle JDBC Thin driver. The readers should be familiar with SSL and the JDBC
Thin driver. For other security features available in the Oracle JDBC Thin driver,
please refer to the J[DBC Developer’s Guide and Reference.

The products versions for both the Database and the driver covered in this paper
are 10.2.0.3 (10g Release 2), 11.1.0.6 (11g) and 11.1.0.7. We also assume that the
Java version is Java SE 5 or 6.

For more information about how to configure the OAS options on the Database
servet, you can read the Advanced Security Administrator’s Guide of the Database

documentation.

1. WHAT SSL GIVES YOU

Secure Sockets Layer (SSL) is an industry standard protocol for securing network
connections. SSL uses RSA public key cryptography in conjunction with symmetric
key cryptography to provide authentication, encryption, and data integrity.

SSL With Oracle JDBC Thin Driver Page 4

Authentication is accomplished through a
certificate authority (CA), which is a third
party that is trusted by both of the
communication parties.

By using Oracle Advanced Security SSL functionality to secure communications

between JDBC Thin clients and Oracle setvers, you can:

Encrypt the connection between clients and servers.

Authenticate the network client tier: the Database server only accepts
connections from clients, or mid-tiers such as the Oracle Application
Server, which have a certificate signed by a trusted authority. Any
connection attempt from a client tier or an application that the Database

doesn’t trust will fail.

Authenticate the Database tier: the JDBC Thin driver can be configured
to validate the Database’s certificate. If it hasn’t been signed by a trusted
authority, the connection will fail. From the application standpoint, you
have proof that the Database can be trusted.

Use SSL as an Authenticate Service on the server (starting in 11.1.0.6 for
the JDBC Thin driver): the Database user, as opposed to the network
client tier, is authenticated through SSL. In this case each Database user

must have his own valid certificate.

Note that you can use SSL features by themselves or in combination with other

authentication methods supported by Oracle Advanced Security. For example,

with the JDBC Thin driver you can use the encryption provided by SSL in

combination with the authentication provided by Kerberos (starting in 11.1.0.6).

SSL support in the JDBC Thin driver was first included in the 10g Release 2 of the
driver. Support for SSL as an authentication service with the Oracle Database was

first supported in the 11g Release 1 of the driver.

The JDBC Thin driver uses the Java Secure Socket Extension (JSSE) defined by
Sun. Sun’s provider for JSSE, called Sun]SSE, is used by default by the Thin driver
but you could use any other provider (PKI or SSL provider). For more details
please read the JSSE Reference Guide.

2. SSL SETTINGS OVERVIEW

This section provides details of the settings that are specific to SSL.

2.1. On server

First of all, the listener must be configured to use the TCPS protocol:

LISTENER = (ADDRESS_LIST=
(ADDRESS= (PROTOCOL=tcps) (HOST=servername) (PORT=2484))

)

SSL With Oracle JDBC Thin Driver Page 5

A wallet is a password-protected container
that is used to store authentication and
signing credentials, including private keys,
certificates, and trusted certificates
required by SSL. You can use Oracle Wallet
Manager to create a wallet.

You can prioritize the cipher suites. When
the client negotiates with the server
regarding which cipher suite to use, it
follows the prioritization you set.

The Transport Layer Security (TLS)
protocol is based on SSL, but has a
different initial handshake protocol and is

more extensible.

The setver’s auto-login wallet location must be provided in both sqlnet.ora and
listener.ora. In the most common case, both files contain the same wallet location
but this is not necessatily the case, the listener could use its own wallet. For the
sake of simplicity, in this paper, we consider that both sqlnet.ora and listener.ora
use the same wallet location.

WALLET LOCATION= (SOURCE= (METHOD=FILE) (METHODiDATA= (DIRECTORY=/server/wa
llet/path/)))

Finally client authentication can be turned on or off. By default it’s on.

SSL_CLIENT AUTHENTICATION=FALSE
Or

SSL CLIENT AUTHENTICATION=TRUE

This setting applies to both listener.ora and sqlnet.ora. If SSL client authentication
is turned on, then the JDBC Thin driver must be configured to send the client’s

digital certificate that must be accepted by the server otherwise the connection will
fail.

Note that you must always provide the wallet location on the server even if you do
not use SSL authentication at all (i.c. you use SSL for encryption only). For more
information on how to create a wallet, please refer to the Advanced Security
Administrator’s Guide of the Database documentation. This paper also explains how
to use the orapki utility to create wallet and certificates for testing purposes (see

section Appendix B).

You can also optionally set the cipher suite on the server, in sqlnet.ora, if you want
to use a subset of the available cipher suites. The server supports the following

cipher suites:

e SSL RSA WITH 3DES_EDE CBC_SHA

e SSL RSA WITH RC4 128 SHA

e SSL RSA WITH RC4_128 MD5

e SSL RSA WITH DES CBC_SHA

e SSL DH anon WITH 3DES_EDE_CBC_SHA
. SSL DH anon WITH RC4 128 MD5

e SSL DH anon WITH DES_CBC_SHA

e SSL_RSA EXPORT WITH RC4 40 MD5

e SSL_RSA EXPORT WITH DES40_ CBC_SHA
e SSL_RSA WITH AES 128 CBC_ SHA

e SSL RSA WITH AES 256 _CBC_SHA

The last two ciphers use the TLS protocol and in Java are named TLS_xxx instead
of SSL_xxx (see section 2.2.5). For more details about the meaning of these

ciphers, please read the Advanced Security Administrator’s Guide.

SSL With Oracle JDBC Thin Driver Page 6

Prioritize cipher suites starting with the
strongest and moving to the weakest to
ensure the highest level of security
possible.

ojdbc14.jar from 10g R2 is compiled with
JDK1.4 but can be used with Java SE 5 or 6
(for incompatibility details, please refer to
the Java SE documentation).

For example, to configure the server to accept only connections using either
SSL_RSA_WITH_AES_128_CBC_SHA Of SSL_DH_anon WITH 3DES_EDE_CBC_SHA, in
sglnet.ora you would add:

SSL_CIPHER SUITES=(SSL RSA WITH AES 128 CBC SHA,
SSL_DH anon WITH 3DES EDE CBC SHA)

With such a setting, if the network client does not want to use SSL authentication,
it will have to use SSL_DH anon WITH 3DES EDE CBC SHA otherwise, it will use
SSL_RSA WITH AES 128 CBC_ SHA.

2.2, On JDBC Thin driver

2.2.1. Which jars are required?

With 10.2.0.3

The JDBC jar can be found in SORACLE_HOME/jdbc/lib:
e ojdbcl4.jar

If you need the Oracle PKI provider (if you use wallets on the client), you also
need the following jars (JORACLE_HOME/jlib):

e oraclepki.jar
e ojpsejar

With 11.1.0.x
You need one of the following JDBC jars (from $ORACLE_HOME /jdbc/lib)

depending on your Java SE version:
e ojdbc5.jar (compiled with Java SE 5)
e 0jdbc6.jar (compiled with Java SE 06)

If you need the Oracle PKI provider (if you use wallets on the client), you also
need the following jars (JORACLE_HOME/jlib):

e oraclepkijar
e osdt_cert.jar

e osdt_core.jar

2.2.2. How to activate SSL?

First of all the JDBC URL must use the “tcps” protocol in order to activate SSL in
the JDBC Thin driver.

For example the following URL activates SSL:

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=tcps) (HOST=servername
) (PORT=2484)) (CONNECT DATA=(SERVICE NAME=servicename)))

SSL With Oracle JDBC Thin Driver Page 7

2.2.3. Which properties are involved?

The following properties may need to be set depending on the functionality of SSL
you want to use. Note that these properties can be set either through connection
properties or system properties.

If you want to use any cipher suite other than the ones that use Diffie-Hellman
anonymous authentication then you must provide a “truststore” which is used to
verify that the certificate coming from the server is trusted. A “truststore” does not
contain any private keys; instead it contains trusted certificate entries, including
Certification Authority (CA) certificates. The following JSSE properties are

involved to set the “truststore’

. javax.net.ssl.trustStore
. javax.net.ssl.trustStoreType
. javax.net.ssl.trustStorePassword

If client authentication is enabled on the server, then you must provide a
“keystore”. The “keystore” contains the client’s certificate. The following |[SSE

Y Y g
properties are involved to set the “keystore™

. javax.net.ssl.keyStore
. javax.net.ssl.keyStoreType
. javax.net.ssl.keyStorePassword

To enable a subset of the cipher suites available by default, use the following
propetty:

. oracle.net.ssl cipher suites

This next property can be used to force the driver to verify that the server’s DN

matches:

. oracle.net.ssl server dn match

Finally to activate SSL as an authentication service in the Database, the following

property is used (introduced in 11.1):

. oracle.net.authentication services

Morte details about how to use these properties will be provided in the next

sections.

Note: How about the “oracle.net.wallet_location”property?In
11.1.0.6 and 10.2.0.3, there are bugs and limitations related to using this
property. For example under MS Windows, you cannot provide the driver
letter in the wallet location. In this paper, we assume that this property is
not used. See the section “What’s new in 11.1.0.7?” for more information

about this property.

SSL With Oracle JDBC Thin Driver Page 8

You must enable Oracle’s PKI provider if

you use wallets.

2.2.4. How can Oracle wallets be used in Java?

Wallets created by Oracle Wallet Manager or “orapki” (see Appendix B) use the
standard PKCS12 format to store X.509 certificates and private keys. The wallet is
stored in a file named “ewallet.p12”.

Unfortunately there are some incompatibilities with the PKCS12 implementation
provided by Sun. Consequently, you must use Oracle’s PKI provider, named
“OraclePKI”, to access Oracle wallets from Java.

If you enable auto-login in the wallet, an obfuscated copy of the wallet is created in
the file “cwallet.sso” which can then be used without providing the password. This
auto-login wallet format is used in the Oracle Single Sign On infrastructure thus
the extension “sso”. To access auto-login wallets (also called SSO wallets in this
paper) from Java, you also need to use Oracle’s PKI provider.

In JSSE, there ate two ways to enable a provider: dynamically and statically.

Enabling Oracle’s PKI provider statically

If you use SSO wallets (cwallet.sso), you can statically enable Oracle’s PKI
provider by adding it at the end of the provider list in the file java.security (this file
is part of your JRE install) which would typically look like:
security.provider.l=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider

security.provider.6=com.sun.security.sasl.Provider
security.provider.7=oracle.security.pki.OraclePKIProvider

Note that if another provider supports the type “SSO”, then it should be inserted
after Oracle’s PKI provider.

If you use PKCS12 wallets (ewallet.p12), you have to move Oracle’s PKI provider
to position #3 or any position ahead of Sun’s provider which also supports
PKCS12 but which is not compatible with Oracle’s wallets. So the list of providers
in java.security would look like:

security.provider.l=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=oracle.security.pki.OraclePKIProvider
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider

Unless you are using the 11.1.0.7 (and onwards) JDBC thin driver, before creating
a new connection, you also need to instantiate OraclePKIProvider so that the class

gets loaded and initialized:

new oracle.security.pki.OraclePKIProvider () ;

SSL With Oracle JDBC Thin Driver Page 9

TLS_RSA_WITH_AES_256_CBC_SHA
requires installation of the JCE Unlimited
Strength Jurisdiction Policy Files. See
J2SE Download Page.

Transport Layer Security (TLS) is basically
an incremental improvement to SSL

version 3.0.

Enabling Oracle’s PKI provider dynamically

Providers can be dynamically enabled by calling system.addProvider or

System.insertProviderAt in your]ava code.

If you use SSO wallets, you simply need to “add” Oracle’s PKI provider because
the order does not matter (assuming that there is not other provider for SSO):

Security.addProvider (new oracle.security.pki.OraclePKIProvider()):;

If you use PKCS12 wallets, Oracle PKI’s provider needs to be inserted at position
#3:

Security.insertProviderAt (
new oracle.security.pki.OraclePKIProvider(),3):;

2.2.5. What cipher suites can be used?

During the SSL handshake, both tiers agree on which cipher suite to use. Although
JSSE defines a lot of cipher suites only a subset can be used which corresponds to
those supported by the Oracle Database server. Note that all ciphers supported by
the Database are defined in JSSE and are supported by the Sun’s SSL provider.
This subset is (cipher suite names in the Java world):

- SSL_RSA WITH 3DES_EDE_CBC_SHA

- SSL_RSA WITH RC4 128 SHA

- SSL_RSA WITH RC4_128 MD5 (default)
- SSL_RSA WITH DES CBC_ SHA

- SSL_DH_anon WITH 3DES_EDE_CBC_SHA
- SSL DH anon WITH RC4 128 MD5

- SSL_DH_anon WITH DES_CBC_SHA

- SSL_RSA EXPORT WITH RC4 40 MD5

- SSL_RSA _EXPORT WITH DES40_CBC_SHA
- TLS_RSA WITH AES 128 CBC_SHA

- TLS_RSA WITH AES_256 CBC_SHA

These names from the Java world match the cipher suite names of the Oracle
Database except for the last two where SSL_xxx (Oracle) is changed to TLS_xxx

(Java).

These names can be used in the oracle.net.ssl_cipher_suites property to force

the SSL handshake to use only the defined suites.

If both the server and the client define a list of preferred cipher suites but their

intersection is empty, then the connection will fail.

If a list of preferred cipher suites is specified neither on the server nor on the

client, the result of the cipher suite negotiation will be SSL_RSA WITH RC4_128 MD5.

In the next sections, we will go through the necessaty steps to configure the JDBC
Thin driver for SSL. We will start with the simplest case where we authenticate
neither the server nor the client, using SSL for encryption only. We will then use
SSL to authenticate the servet, and then both the server and the client and finally

we will use SSL as an authentication service in the Database.

SSL With Oracle JDBC Thin Driver Page 10

Because double encryption is prohibited, if
you configure SSL encryption, you must
disable non-SSL encryption.

CASE #1: USE SSL FOR ENCRYPTION ONLY

Consider the most basic case where you want to use SSL for encryption and data
integrity only. You must use Diffie-Hellman anonymous authentication in this case

otherwise the connection will fail.

The following cipher suites are available for this case:

(SSL_DH_anon WITH 3DES EDE CBC SHA,
SSL_DH_anon WITH_RC4_128 MD5,
SSL_DH_anon WITH DES_CBC_SHA)

With Diffie-Hellman anonymous authentication neither the server nor the client
will be authenticated through SSL.

'This doesn’t mean that there is no authentication in the Oracle database,
authentication will have to be done through another way (for example a username
and password such as scott/tiger).

Server configuration

The listener needs to be configured to turn off the client authentication. In a

typical configuration, the listener.ora file would contain:

LISTENER = (ADDRESS_LIST:

(ADDRESS= (PROTOCOL=tcps) (HOST=servername) (PORT=2484))
)
WALLETiLOCATION=(SOURCE=(METHOD=FILE)(METHODiDATA=(DIRECTORY=/server/wa
llet/path)))
SSL_CLIENT AUTHENTICATION=FALSE

Similarly, SSL client authentication must me turned off in sqlnet.ora:

WALLET_LOCATION=(SOURCE=(METHOD=FILE)(METHOD_DATA=(DIRECTORY=/Server/wa
llet/path)))
SSL_CLIENT AUTHENTICATION=FALSE

JDBC Thin client configuration
You do not need to set any “truststore” nor “keystore”. However the cipher suite
must be forced to use Diffie-Hellman anonymous authentication:

String url =
"jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=tcps) (HOST=servernam
e) (PORT=2484)) (CONNECT DATA=(SERVICE NAME=servicename)))";

Properties props = new Properties();
props.setProperty ("user", "scott");
props.setProperty ("password", "tiger");

props.setProperty ("oracle.net.ssl cipher suites",

" (SSL_DH_anon WITH_ 3DES_EDE_CBC_SHA, SSL_DH anon WITH RC4_128 MD5,
SSL_DH anon WITH DES CBC_SHA)");

Connection conn=DriverManager.getConnection (url,props);

SSL With Oracle JDBC Thin Driver Page 11

SSL can be combined with other
authentication methods such as Kerberos
or Radius with the JDBC Thin driver
starting in 11.1.0.6.

A Public Key Infrastructure (PKI) is a
substrate of network components that
provides a security underpinning, based on

trust assertions, for an entire organization.

Obviously, if you set the property oracle.net.ssl server dn match to "true"
(the default is "fa1se"), then the connection will fail and you will get the following
exception message “peer not authenticated” because the JDBC Thin driver
couldn’t authenticate the server and thus verify that the server’s DN matches the
one from the URL.

CASE #2: USE SSL FOR ENCRYPTION AND SERVER AUTHENTICATION

Any cipher suite other than those that use Diffie-Hellman anonymous

authentication can be used.

Server configuration

The server configuration remains unchanged.

JDBC Thin client configuration

The “truststore” is used to validate the servet’s certificate. If none of the trusted
certificate contained in the “truststore’ can be used to validate the servet’s
certificate, then the connection will fail with the following exception message
“unable to find valid certification path to requested target” (with the default SSL
provider from Sun).

You can use any format of “truststore” as long as you specify a provider for that
format. Sun’s default PKI provider supports the JKS format for the “truststore”.
Wallets can also be used with Oracle’s PKI provider.

If the truststore format type is JKS

The following code snippet shows how to set a JKS truststore. Note that the path
is specified in the MS Windows style as an example:

String url =
"jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=tcps) (HOST=servernam
e) (PORT=2484)) (CONNECT DATA=(SERVICE NAME=servicename)))");

Properties props =
props.setProperty ("
props.setProperty (
props.setProperty ("

new Properties();

'usexr", "scott");

'password", "tiger");

'javax.net.ssl.trustStore",
"D:\\truststore\\truststore.jks");

props.setProperty("javax.net.ssl.trustStoreType", "JKS") ;

props.setProperty ("javax.net.ssl.trustStorePassword","welcomel23") ;

Connection conn = DriverManager.getConnection (url, props);

If the truststore is a wallet

You can use wallets to store the trusted certificates. Remember that you need to

enable Oracle’s PKI provider to use wallets.

The following Java code snippet shows how to use a PKCS12 wallet as a truststore
(path specified in the UNIX style):

SSL With Oracle JDBC Thin Driver Page 12

String url =
"jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=tcps) (HOST=servernam
e) (PORT=2484)) (CONNECT DATA=(SERVICE NAME=servicename)))");
Properties props = new Properties();
props.setProperty ("user", "scott");
props.setProperty ("password", "tiger");
props.setProperty("javax.net.ssl.trustStore",
"/truststore/ewallet.pl2");
props.setProperty("javax.net.ssl.trustStoreType", "PKCS12") ;
props.setProperty("javax.net.ssl.trustStorePassword","welcomel23") ;
Connection conn = DriverManager.getConnection(url, props);

If you use Oracle SSO wallets, i.e. if you turned on “auto login” when you created

the “truststore” wallet, there is no need for a password:

props.setProperty("javax.net.ssl.trustStore",
"/truststore/cwallet.sso");
props.setProperty ("javax.net.ssl.trustStoreType", "SSO") ;

Check the Server’s Distinguished Name

If the server is successfully authenticated (meaning its certificate is trusted), its DN
can be checked.

The expected DN is specified in the JDBC URL like in this example:

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=tcps) (HOST=servername
) (PORT=2484)) (CONNECT DATA=(SERVICE NAME=servicename)) (SECURITY=(SSL_SE
RVER_CERT DN=\"CN=server_ test,C=US\")))

The following property also needs to be used to force the JDBC Thin driver to
verify the server’s DN:

props.setProperty ("oracle.net.ssl server dn match", "true");

As expected, if the DN in the server’s certificate does not match the DN specified
in the URL, the connection will fail with the following exception message:
“Mismatch with the server cert DN”.

CASE #3: USE SSL FOR ENCRYPTION AND AUTHENTICATION OF
BOTH TIERS

Server configuration

The listener needs to be configured to turn on client authentication. In a typical

configuration, the listener.ora file would contain:

LISTENER = (ADDRESSiLIST:
(ADDRESS= (PROTOCOL=tcps) (HOST=servername) (PORT=2484))
)
WALLET LOCATION= (SOURCE= (METHOD=FILE) (METHOD_DATA= (DIRECTORY=/server/wa
llet/path)))
SSL_CLIENT AUTHENTICATION=TRUE

SSL With Oracle JDBC Thin Driver Page 13

Similarly, SSL client authentication must be turned on in sqlnet.ora:

WALLET LOCATION=(SOURCE= (METHOD=FILE) (METHOD DATA=(DIRECTORY=/server/wa
llet/path)))
SSL_CLIENT AUTHENTICATION=TRUE

The location of the wallet in listener.ora and sqlnet.ora must be the same.

JDBC Thin client configuration

The “truststore” must be specified as indicated in the previous section.

Because the client now needs to be authenticated on the server, you must also
specify a “keystore”. The “keystore” contains not only the client certificate which
will be used for authentication but also a set of ptivate/public keys that will be

used for encryption.

You can use any format for the “keystore” as long as you specify a provider for
that format. Sun’s default PKI provider supports JKS and PKCS12 (see JSSE
documentation for more details).

If you use a JKS keystore, Sun’s PKI provider will be used. If you use PKCS12 or
SSO wallets then Oracle’s PKI provider must be used.

If you do not provide a “keystore”, then the server cannot verify the client
certificate and the SSL. handshake fails. The connection fails with the following

exception message: “Received fatal alert: bad_certificate”.

If the keystore format type is JKS

In the following code snippet, “props” are the connection properties and the
keystore location is specified in the MS Windows style:

props.setProperty ("javax.net.ssl.keyStore",

"D:\\client jks\\keystore.jks");
props.setProperty ("javax.net.ssl.keyStoreType","JKS") ;
props.setProperty("javax.net.ssl.keyStorePassword", "welcomel23") ;

If the keystore is a wallet

Again, Oracle’s PKI provider needs to be enabled.
If you use PKCS12 wallets (path is specified in the UNIX style):

props.setProperty("javax.net.ssl.keyStore",

"/client wallet/ewallet.pl2");
props.setProperty ("javax.net.ssl.keyStoreType", "PKCS12") ;
props.setProperty ("javax.net.ssl.keyStorePassword", "welcomel23") ;

And if you use SSO wallets (no password required):

props.setProperty("javax.net.ssl.keyStore",
"/truststore/cwallet.sso");
props.setProperty("javax.net.ssl.keyStoreType","SSO") ;

SSL With Oracle JDBC Thin Driver Page 14

Database user authentication through SSL
is supported in the JDBC Thin driver
starting in 11.1.0.6.

CASE #4: USE SSL AS AN AUTHENTICATION SERVICE IN THE
DATABASE

A database user identified by his DN can be authenticated through SSL. This
requires that SSL client authentication is enabled. The server verifies the client
credentials during the SSL handshake and if the SSL authentication service is
enabled then the Database user is authenticated with the Database through his SSL

credential.

Note that in the previous sections, we have used SSL to authenticate network tiers
such as the database or the mid tier. Comparatively in this section, SSL will be used
to authenticate a Database user: each Database user will have to possess his own

certificate.

Server configuration

The listener configuration is the same as in the previous section.

In addition to the settings from the previous section, you need to enable the SSL
authentication service in the file sqlnet.ora:

SQLNET.AUTHENTICATION SERVICES = (tcps, beq, none)

A user that is identified externally as his DN has to be created. For example:

SQL> create user sslclient identified externally as
'CN=client test,C=US';

User created.

SQL> grant connect,create session to sslclient;
Grant succeeded.

JDBC Thin client configuration
On the JDBC side, the connection property

“oracle‘net‘authentication_services”nCCdStO be used to activate SSL.
authentication. Note that if you use SSL authentication, you no longer need to
provide a username and password but if you do, then the specified username will

be used during the Database authentication.

In the following code snipped, SSO wallets are used but you could also use JKS or
PKCS12:

String url =
"jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=tcps) (HOST=servernam
e) (PORT=2484)) (CONNECT DATA=(SERVICE NAME=servicename)))");

Properties props = new Properties();

props.setProperty ("oracle.net.authentication_services"," (TCPS)") ;

props.setProperty("javax.net.ssl.trustStore",
"D:\\truststore\\cwallet.sso");

SSL With Oracle JDBC Thin Driver Page 15

props.setProperty("javax.net.ssl.trustStoreType", "SSO") ;

props.setProperty ("javax.net.ssl.keyStore",
"D:\\client wallet\\cwallet.sso");
props.setProperty ("javax.net.ssl.keyStoreType","SSO") ;

Connection conn = DriverManager.getConnection(url, props);

WHAT’S NEW IN 11.1.0.7?

Some enhancements related to SSL have been done in the 11.1.0.7 JDBC Thin
driver. They include:

Meaningful error messages

The exceptions contain a cause. This makes it a lot easier to debug the
configuration issues. You get more meaningful error messages such as “Unable to
initialize the key stote.java.io.FileNotFoundException: D:\truststore (The system
cannot find the path specified)” as the cause of the generic
“java.sql.SQLException: Io exception: The Network Adapter could not establish

the connection” exception, etc.

Since you can use the 11.1.0.7 JDBC Thin driver against a 11.1.0.6 database, you
should always consider giving it a try if you are having trouble configuring SSL.

Information about the cipher suite used

'The‘TMacleConnection.getEncryptionAlgoritthame()”rnethodlfturnsthe
SSL cipher suite used (the result of the SSL handshake). For example it can return
the character string:

SSL_DH anon WITH 3DES EDE CBC SHA

Better handling of the PKCS12 provider for wallets
To enable Oracle’s PKI provider statically for PKCS12 wallets, you had to change

the “java.security” file and create an instance of OraclePKIProvider in your java
code before creating a new connection. In 11.1.0.7, this is no longer the case.
Adding the Oracle’s PKI provider at position #3 in the “java.security” file is all
you need to do.

Possibility to use the “oracle.net.wallet_location” property

In 10.2.0.3 and 11.1.0.6 it is recommended to not use the
“oracle.net.wallet_location” connection property because of some bugs related to

this property. These bugs have been fixed in 11.1.0.7.

This property can now be used to specify the wallet location using two formats:

>

1. “(SOURCE=(METHOD=FILE) (METHOD_ DATA=(DIRECTORY=...)))” where you
specify the directory where the client’s wallet is located (for example
D:\\path\\to\\directory under MS Windows). You can also set the

wallet password through the “oracle.net.wallet_password” property (new

SSL With Oracle JDBC Thin Driver Page 16

in 11.1.0.7). If the password is specified, the driver looks for the file

“ewallet.p12”, otherwise it uses “cwallet.sso”.

2. “file:...” where you specify either a directory or a filename. For example
under MS Windows: “file:D:\\path\\to\\directory” ot
“file:D:\\path\\to\\directory\\ewallet.pl2”. If the wallet password
is specified through the “oracle.net.wallet_password” property then the
wallet type is assumed to be PKCS12 otherwise SSO is assumed.

When “oracle.net.wallet_location” is used, the wallet is used for both the truststore
and the keystore and it overrides any setting done through the JSSE properties

“javax.net.ssl...”.

Note that the same wallet can be used for SSL and to store a username and

password pair using the “mkstore” utility.

CONCLUSION

SSL offers a high level of network security including encryption, data integrity and
authentication of both tiers using the latest standards in cryptography. As always
with security, there is a cost: the initial SSL. handshake and very little additional
CPU afterwards. But when you think of all the security features that come all at
once, it’s worth the cost.

All the SSL features are available when using the JDBC Thin driver and the
configuration is fairly easy.

So if you are looking for a flexible, robust and easy way to secure your Java
applications on the network with the JDBC Thin driver, using SSL is a good

option.

APPENDIX A TROUBLESHOOTING

This section contains a non-exhaustive list of exceptions that you may encounter

when configuring the JDBC Thin driver for SSL.

¢ “javalang.NoClassDefFoundError:
com/phaos/crypto/AuthenticationException”: you are using 10.2.0.4 and

you need to include ojpse.jar in your classpath.

e “javalang.NoClassDefFoundError:
oracle/security/crypto/core/ AuthenticationException™: you are using

11.1.0.x and you need to include osdt_core.jar in your classpath.

SSL With Oracle JDBC Thin Driver Page 17

file:D:\\path\\to\\directory\\ewallet.p12
file:D:\\path\\to\\directory�or
file:��whereyou

“java.lang.NoClassDefFoundError:

oracle/security/crypto/cert/PKCS12”: you are using 11.1.0.x and you

need to include osdt_cert.jar in your classpath.

“java.sql.SQLException: Io exception: The Network Adapter could not

establish the connection”: this exception is very generic and can be caused

by multiple configuration issues. In 10.2.0.3 and 11.1.0.6, you do not get

the cause which could be:

o

“Unable to initialize the key
store.java.jo.FileNotFoundException: D:\truststore (The system
cannot find the path specified)” in other words the path specified
in the truststore (the same could happen for the keystore)
property is wrong.

“java.security.KeyStoreException: SSO not found” because you
specified an SSO truststore type but you didn’t enable the
Oracle’s PKI provider (Security .addProvider (new

oracle.security.pki.OraclePKIProvider()) ;).

“java.io.lOException: Invalid keystore format” if for example
you set javax.net.ssl.trustStore = D:\\cwallet.sso without
Specifyiﬂg the truststoretype: javax.net.ssl.trustStoreType =
SSO.

“java.io.lOException: failed to decrypt safe contents entry:
java.ang. ArithmeticException: / by zero because this is needed”:
if you are using a PKCS12 wallet, you need to use the Oracle
PKI provider which needs to bet set at position #3 or higher
(Security .insertProviderAt (new

oracle.security.pki.OraclePKIProvider (), 3) ;).

“com.phaos.ASN1.ASN1FormatException:
com.phaos.crypto.CipherException: Invalid padding string (or
incorrect password)” because the password is missing (when

using PKCS12 wallets).

“java.sql.SQLException: Io exception: The Network Adapter could not

establish the connection”: you may get this exception when attempting to

connect with SSL through a firewall because the listener may send a
REDIRECT packet to the client with a different TCP port; when the
client attempts to reconnect using this new port the firewall blocks it.

o

The following note describes a workaround: “Note 125021.1:
Using SSL will cause Port redirection. The workaround is to
select and set the ports using MTS in the INIT<SID>.ORA”.

SSL With Oracle JDBC Thin Driver Page 18

o Starting in 11.2.0.2.0, the JDBC thin driver has the ability to
renegociate the SSI. handshake and hence no longer needs to
reconnect through a different port. There is a direct handoff by
the listener to the server process. This addition to JDBC thin
driver was done in the fix for bug 8935561 which was also
backported into 11.1.0.7.0 (backport label
ST_JAVAVM_BLR_8935561_BACKPORT_11.1.0.7.0).

“java.sql.SQLException: Io exception: Remote host closed connection
during handshake”. Look in the listener.log file. You should see: either
“TINS-12560: TNS:protocol adapter error” or “TNS-00540: SSL protocol
adapter failure”. You need to stop the listener, add the wallet location in

listener.ora and restart it.

“java.sql.SQLException: Io exception:
sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to
find valid certification path to requested target”: the client truststore does
not contain the path to approve the certificate of the server (contained in
the server’s wallet). You should also make sure that both sqglnet.ora and
listener.ora point to the same wallet location. If you have changed the

wallet location in the “listener.ora”; you also need to restart the listener.

“java.sql.SQLException: Io exception: Received fatal alert:
bad_ certificate”, turn off SSL client authentication
(ssl_client_authentication=false) in listener.ora file and sqlnet.ora or

provide a valid keystore.

“java.sql.SQLException: Io exception:
sun.security.validator.ValidatorException: No trusted certificate found™:
you need to provide the truststore or use a cipher suite that uses

anonymous authentication.

“java.sql.SQLException: Io exception: Received fatal alert:
handshake_failure™: if the client and setver for example cannot agree on

which cipher suite to use.

“java.sql.SQLException: Io exception: java.lang.RuntimeException:
Unexpected error: java.security.Invalid AlgorithmParameterException: the
trustAnchors parameter must be non-empty’: if you are using PKCS12
wallets and Oracle’s PKI provider isn’t properly enabled. This exception
comes from the PKCS12 implementation from Sun (Sun’s PKI provider)
which isn’t compatible with Oracle wallets. Oracle’s PKI provider must be
propetly enabled for PKCS12 either statically or dynamically if you use
PKCS12 wallets.

“java.sql.SQLException: Io exception: Broken pipe”: this exception
occurs when client authentication is enabled on the setver and the

SSL With Oracle JDBC Thin Driver Page 19

certificate sent by the client couldn’t be checked by the server so the SSL.
handshake fails. Usually this means that your truststore is correct but your
keystore isn’t.

APPENDIX B CREATING TRUSTSTORES AND KEYSTORES
Using orapki

Create a wallet for the test CA

For test purposes, we are going to use a CA called “root” which has a self-signed
certificate.

Create an empty wallet in the root directory:

> orapki wallet create -wallet ./root

You end up with ewallet.p12 in the ./root directory

Add a self-signed certificate to the wallet:

> orapki wallet add -wallet ./root -dn CN=root test,C=US -keysize 2048
-self signed -validity 3650

View the wallet:

> orapki wallet display -wallet ./root

Requested Certificates:
User Certificates:

Subject: CN=root test,C=US
Trusted Certificates:
Subject: CN=root test,C=US

()

Export the certificate:

> orapki wallet export -wallet ./root -dn CN=root test,C=US -cert
./root/b64certificate.txt

Create a wallet for the Oracle server

Create an empty wallet with auto login enabled:

> orapki wallet create -wallet ./server -auto login

Two files are created under the server directory:

server/cwallet.sso server/ewallet.pl2

Add a user in the wallet (a new pair of private/public keys is created):

> orapki wallet add -wallet ./server -dn CN=server test,C=US -keysize
2048

SSL With Oracle JDBC Thin Driver Page 20

If you display the server’s wallet you will see the following requested certificate:

Requested Certificates:
Subject: CN=server test,C=US

Export the certificate request to a file:

> orapki wallet export -wallet ./server -dn CN=server test,C=US -
request ./server/creq.txt

Using the test CA, sign the certificate request:

> orapki cert create -wallet ./root -request ./server/creq.txt -cert
./server/cert.txt -validity 3650

You now have the following files under the server directory:

server/cert.txt server/creq.txt server/cwallet.sso
server/ewallet.pl2

View the signed certificate:

> orapki cert display -cert ./server/cert.txt -complete

{ fingerprint = cb384d05b627d2cb20£f0499781£f704£f6, notBefore = Tue Nov
13 17:44:47 PST 2007, notAfter = Fri Nov 10 17:44:47 PST 2017, holder =
CN=server test,C=US, issuer = CN=root test,C=US, serialNo = O,
sigAlgOID = 1.2.840.113549.1.1.4, key = { modulus =
19593679513746015765355962711079952774176644245360983953992652691247218
37799436134516119827593421444747722682023020838584911001892449638770444
84639443652466378093963161320192391160905740289465375255115252978607983
40990134659538369793777897678910491880573044079214697664783396711473736
71373082779621690875555437771056651083920634171604505885359922675484607
49873033793093373387298332477942247788814090235867746623126621826931950
55288771727761868895535312229718865977983610913559597159181862643061313
98447800360776201784250574411699704826790543407179460023192497496919803
2240336875590366035431182383935713771751264581303, exponent = 65537 } }

Add the test CA’s trusted certificate to the wallet
> orapki wallet add -wallet ./server -trusted cert -cert

./root/b64certificate.txt

If you display the server’s certificate at this point, you should see a new entry in the
list of trusted certificates:

Subject: CN=root test,C=US

Finally add the user certificate to the wallet:

> orapki wallet add -wallet ./server -user cert -cert ./server/cert.txt

Displaying the server’s certificate will show:

Requested Certificates:
User Certificates:

Subject: CN=server test,C=US
Trusted Certificates:
Subject: CN=root test,C=US

(...)

SSL With Oracle JDBC Thin Driver Page 21

Note that if you had not added the trusted certificate in the previous step you

would have run into this error:

Could not install user cert at./client/cert.txt
Please add all trusted certificates before adding the user certificate

For the client (proceed the same way as for the server)

> orapki wallet create -wallet ./client wallet -auto_ login

> orapki wallet add -wallet ./client wallet -dn CN=client test,C=US -
keysize 2048

> orapki wallet export -wallet ./client wallet -dn CN=client test,C=US
-request ./client wallet/creq.txt

> orapki cert create -wallet ./root -request ./client wallet/creq.txt
-cert ./client wallet/cert.txt -validity 3650

> orapki wallet add -wallet ./client wallet -trusted cert -cert
./root/b64certificate.txt

> orapki wallet add -wallet ./client wallet -user_cert -cert
./client wallet/cert.txt

To create a wallet that contains only the trusted certificate
For a wallet that would be used for the truststore only:

> orapki wallet create -wallet ./truststore -auto login

> orapki wallet add -wallet ./truststore -trusted cert -cert
./root/b6dcertificate.txt

> orapki wallet display -wallet ./truststore

Requested Certificates:

User Certificates:

Trusted Certificates:

(..0)
Subject: CN=root test,C=US

Using keytool

Create a JKS keystore
Create a new ptivate/public key pair for ‘CN=client_test, C=US":

> keytool -genkey -alias testclient -dname 'CN=client test, C=US' -
storepass 'welcomel23' -storetype JKS -keystore ./client jks/client.jks
-keyalg RSA

Generate a CSR (Certificate Signing Request):

> keytool -certreq -alias testclient -file ./client jks/csr.txt -
keystore ./client jks/client.jks -storepass 'welcomel23'

Sign the client certificate using the test CA (root):

SSL With Oracle JDBC Thin Driver Page 22

> orapki cert create -wallet ./root -request ./client jks/csr.txt -
cert ./client jks/cert.txt -validity 3650

Import the signed certificate:

> keytool -import -v -alias testclient -file ./client jks/cert.txt -
keystore ./client jks/client.jks -storepass 'welcomel23'

keytool error: java.lang.Exception: Failed to establish chain from
reply

Oops you need to import the test CA's certificate:

> keytool -import -v -alias testroot -file ./root/b6dcertificate.txt -
keystore ./client jks/client.jks -storepass 'welcomel23'

And retry:

> keytool -import -v -alias testclient -file ./client jks/cert.txt -
keystore ./client jks/client.jks -storepass 'welcomel23'

At any time you can display the keystore by calling:

> keytool -list -keystore ./client jks/client.jks -storepass
'welcomel23' -v

Keystore type: jks
Keystore provider: SUN

Your keystore contains 2 entries

Alias name: testroot
Creation date: Nov 13, 2007
Entry type: trustedCertEntry

Owner: CN=root test, C=US
Issuer: CN=root test, C=US
Serial number: O
Valid from: Tue Nov 13 17:33:19 PST 2007 until: Fri Nov 10 17:33:19 PST
2017
Certificate fingerprints:
MD5: 71:66:1B:34:F3:40:75:5C:A1:B1:5E:D5:98:E6:60:ED
SHAL:
13:C6:35:F8:EF:48:0F:75:04:99:02:F2:B4:A4:DA:CE:BE:E0:65:9F

R T R R

R R Rk b b b b b b b b b b b b b b b I b b b b b b b b b b b I I I I i

Alias name: testclient
Creation date: Nov 13, 2007
Entry type: keyEntry
Certificate chain length: 2
Certificate[1l]:
Owner: CN=client test, C=US
Issuer: CN=root test, C=US
Serial number: O
Valid from: Tue Nov 13 18:44:49 PST 2007 until: Fri Nov 10 18:44:49 PST
2017
Certificate fingerprints:
MD5: 67:5A:17:E8:08:B6:49:3D:71:9F:C6:83:C8:5F:4D:3A

SSL With Oracle JDBC Thin Driver Page 23

SHAL:
D3:DF:4E:6C:6E:4E:11:3B:83:7C:12:B8:1E:8B:D7:F1:47:AE:DF:80
Certificate[2]:

Owner: CN=root test, C=US

Issuer: CN=root test, C=US

Serial number: O

Valid from: Tue Nov 13 17:33:19 PST 2007 until: Fri Nov 10 17:33:19 PST
2017

Certificate fingerprints:

MD5: 71:66:1B:34:F3:40:75:5C:A1:B1:5E:D5:98:E6:60:ED

SHAL:
13:C6:35:F8:EF:48:0F:75:04:99:02:F2:B4:A4:DA:CE:BE:E0:65:9F

R R R R i R R R R I I I

KA KKK KA A A KA A A A A A A A KA A A A A A A A A A A A A A A A A AR A KA XA XA KA KKK

Create a JKS truststore
We import the test CA certificate:

> keytool -import -v -alias testroot -file ./root/bé64certificate.txt -
keystore ./truststore/truststore.jks -storetype JKS -storepass
welcomel23

Display the truststore to make sure that the test CA certificate is present:

> keytool -list -keystore ./truststore/truststore.jks -storepass
'welcomel23' -v

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: testroot
Creation date: Nov 13, 2007
Entry type: trustedCertEntry

Owner: CN=root test, C=US
Issuer: CN=root test, C=US
Serial number: O
Valid from: Tue Nov 13 17:33:19 PST 2007 until: Fri Nov 10 17:33:19 PST
2017
Certificate fingerprints:
MD5: 71:66:1B:34:F3:40:75:5C:A1:B1:5E:D5:98:E6:60:ED
SHAL:
13:C6:35:F8:EF:48:0F:75:04:99:02:F2:B4:A4:DA:CE:BE:E0:65:9F

R R R

R R Rk b I b b b b b b b b b b b b b b h I b b b b b b b b b b b I I I I i

SSL With Oracle JDBC Thin Driver Page 24

ORACLE

SSL With Oracle JDBC Thin Driver

Initial version: November 2007

Update: November 2008, April 2010

Author: Jean de Lavarene

Contributors: Benjamin Job, Kuassi Mensah

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2008, Oracle. All rights reserved.

This document is provided for information purposes only and the
contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

d

Other names may be tr ks of their respective owners.

http:oracle.com

